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ABSTRACT

The most urgent public-health problem today is to devise. effective strategies to
minimize the destruction caused by the AIDS epidemic. This complex problem will involve
medical advances and new public-health and education initiatives. Mathematical models
based on the underlying transmission mechanisms of the AIDS virus can help the
medical /scientific community understand and anticipate its spread in different popula-
tions and evaluate the potential effectiveness of different approaches for bringing the
epidemic under control. Before we can use models to predict the future, we must carefully
test them against the past spread of the infection and for sensitivity to parameter changes.
The long and extremely variable incubation period and the low probability of transmitting
the AIDS virus in a single contact imply that population structure and variations in
infectivity both play an important role in its spread. The population structure is caused by
differences between people in numbers of sexual partners and the use of intravenous drugs
and because of the way in which people mix among age, ethnic, and social groups. We use
a simplified approach to investigate the effects of variation in incubation periods and
infectivity specific to the AIDS virus, and we compare a model of random partner choices
with a model in which partners both come from similar behavior groups.

I. INTRODUCTION

Most current predictions of the acquired immune deficiency syndrome
(AIDS) epidemic are based on simple exponential or polynomial extrapola-
tions of current trends. These curve-fitting methods cannot be used reliably
for long periods of time, nor can they provide understanding of the interac-
tions that lead to the epidemic’s spread. During the long asymptomatic
period after infection with the human immunodeficiency virus (HIV) that
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causes AIDS, changes in the environment of viral transmission occur con-
tinuously, causing complex interactions. Only models that are founded on
the transmission mechanisms of HIV can show how the early infection of
high-risk groups, behavioral changes, and future medical advances such as
treatments and vaccines will affect the future course of this epidemic. The
effects will be highly nonlinear functions of the parameter values and at
times may even lead to changes that are counter to both intuition and simple
extrapolated predictions. The mathematical model predictions of these coun-
terintuitive mechanisms may greatly improve our understanding of the
observations.

In developing the mathematical models, we are creating a logical structure
that organizes existing information on AIDS into a coherent framework and
suggests new information that must be collected about a wide variety of
topics, such as drug use, sexual activity, and the interactions between HIV
and the immune system. Models can provide qualitative insights, even when
data are lacking, and can help prioritize data collection. ' |

‘We have already gained some qualitative insights from our modeling
work. For example, we have seen that the amount of sexual contact and
needle-sharing between a small group of high-activity and a larger group of
lower-activity individuals determines both who gets infected and the speed
with which the epidemic progresses. If there is little mixing between these
groups, then the individuals in high-risk groups are nearly all infected before
the infection moves into lower-risk groups. However, if mixing is large, many
more lower-risk individuals will be infected in the early stages of the
epidemic; the epidemic moves much faster when mixing is large because
there is a larger pool of lower-risk individuals to feed it. In a model where
partners are chosen randomly, regardless of their partner-change rate, the
total number of infected low-risk individuals quickly exceeds the number of
infected high-risk individuals. This random-mixing result is inconsistent with
the data. These differences support the urgent need to collect and analyze
the information on mixing patterns to estimate critical model parameters.

The probability of infection per contact (infectivity) is too poorly under-
stood to use the AIDS caseload data to distinguish between these mixing
patterns. Our modeling also indicates that, if the difference between male-
to-female and female-to-male infectivity is large, then the lower of these two
infectivities will tend to determine heterosexual spread, with epidemic pat-
terns potentially different from that seen in homosexuals and intravenous
(IV-drug) users. This difference indicates that collecting and analyzing
information on infectivity should have high priority.

The infectivity is significantly lower in the middle stage of HIV infection
than when end-stage disease (AIDS) approaches. Therefore, testing and
counseling programs that identify and persuade infected individuals to avoid
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1nfect1ng others will be more effective than if the infectivity were constant.
Models to predict the role of testing and counseling must include the effects
of variable infectivity.

Although it is unlikely that any one model will provide accurate long-term
predictions of the numbers of AIDS cases, a model that is based on
interactions that lead to disease transmission could eventually allow investi-
gators to answer many questions. For example, one could assume increased
condom use by people in a targeted age group and region and then
determine how much that increased use will slow the local course of the
epidemic. This predictive ability would then help authorities decide if it is
‘more effective to encourage condom use in that group than to use another
strategy, such as stressing the 1mportance of having fewer partners or
reducing the incidence of other sexually transmitted diseases (STDs), to
lower the probability of infection for some population groups. As another
example, a partially effective vaccine with potentially harmful side effects
might be developed. Somehow it must be ascertained which persons should
be vaccinated. The model would be used to understand how vaccinating each
group affects the spread of the epidemic.

~ To prevent new infections, intervention strategies must focus on the
groups currently being infected, and those next at risk. Although the most
accessible and dramatic data come from AIDS cases, these cases primarily
represent infections that occurred 4 or more years ago. To understand where

infections are occurring today is a difficult task. Models can help in planning
- future seroprevalence studies and intervention strategies by indicating where
the epidemic front lines are likely to be.

As models are developed, they must be tested for consistency with the
past history of the epidemic. We cannot hope to predict the future before we
can explain the past. Much of the focus of this paper is therefore on
understanding past HIV spread in homosexual men.

Any inconsistencies between the data and the models need an explana-
tion: matching parameters so that the absolute numbers of AIDS cases are
correct is not a verification that a model is correct. Many different models
can match these gross data sets and forecast widely different futures.
Parameter estimates must lie within ranges obtained by independent ob-
servations. Correlated residuals between the fitted model predictions and
AIDS data may give important clues to additional mechanisms that models
must incorporate. Data from seroprevalence and cohort studies should also
be consistent with the model’s predictions. For example, a random-mixing
model leads to a fast early growth in infection in homosexual men having
2-5 partners per year. This growth rate is inconsistent with the data from
testing blood samples obtained before 1982 [12, 22] and also with the Center
for Disease Control (CDC) case-tracing study of the first men with AIDS [6].
On the other hand, in a model where high-risk individuals primarily mix
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with others at high risk, then lower-risk groups are not infected in the early
stages. This model is consistent with the AIDS data and agrees with the
seropositivity studies. We plan to test the hypothesis that most mixing was
between men of similar risk behavior by analyzing the San Francisco
Hepatitis B data on behavior versus infection from 1978 to 1982.

- Another use of models is to estimate unknown data on the basis of the
known facts. For example, the past distribution of HIV infection can be
estimated from the current AIDS caseload and the distribution of times from
infection to AIDS. To determine the consistency of the generated data
requires a formal mathematical model similar to the one we are designing,.
The available data can also be assessed indirectly to determine their internal
consistency by leaving some data out, generating estimates of the missing
data based on one or more models, and then comparing the two data sets.

The HIV that causes AIDS is primarily transmitted through sexual
contact (man-woman, man-man), sharing of hypodermic needles, and ex-
posure to infected blood either perinatally or through blood transfusions.
HIV is not transmitted by nonsexual daily contacts, even though the virus
has been isolated from almost every body fluid [17]. The infection risk to an
individual' depends both on the behavior of the individual and on the
prevalence of infection in the groups with which the individual has sexual
contacts or shares needles. This prevalence varies between regions and age
groups, as well as between behavioral risk groups. An individual is more
likely to become infected if he or she has multiple sexual partners; has sexual
partners in a high-risk group; lives in a highly populated area; lives in the
New York City, Washington (D.C.), San Francisco, or Los Angeles area;
- shares needles when using drugs; is between 25 and 35 years of age; or has
another STD. .

A single model that tried to address all of the questions raised in this
paper would contain too many variables to be solved numerically on even
the largest and most advanced computers. Even if it were possible to solve
the system, not enough is known about human behavior to supply the
necessary information to the program, nor would a deep understanding of
the interactions within the transmission network be gained by initially
solving a large system. Instead, simplified submodels must be developed to
address specific questions. The assumptions behind these models should be
clear, including both what is being neglected that can probably be neglected
and what is being neglected that is unrealistic. Studying families of simple
models will allow us to understand how different factors interact in the
- spreading of the AIDS virus.

For example, to comprehend how precisely the infectivity profile (infec-
tiousness with time since infection) must be measured, one can look at the
sensitivity of a very simple model to variations in the profile. Such a model
can lump age groups and regions, but it cannot ignore all heterogeneities in
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sexual-partner choices. On the other hand, if we wish to understand how age
differences may delay spreading of the infection from one age group into
another, then we cannot ignore age-structured behavior. The behavior of
simple models should be carefully investigated to build a picture of interac-
tions that will allow us to make estimates that lead to simplifications in more
global models.

For modeling purposes, the portion of the male and female population
that engage in behaviors that put them at risk for HIV, namely, nonmonogo-
mous sexual contact and needle-sharing drug use, is divided according to
their risk behaviors and the manner in which they choose partners. These
susceptible people are infected through contact with infected people, and
infected people develop clinical AIDS (such as Kaposi’s sarcoma [KS] or
opportunistic infections such as pneumocystis pneumonia [PCP]) at a rate
that depends on the length of time since HIV infection. AIDS patients
subsequently die at a rate that depends on the length of time since they
developed AIDS and on the type of clinical manifestation (either KS or
opportunistic infections). We assume that an infected person remains in-
fected ‘and infectious for life. This one-way migration of susceptibles to
infecteds is due to the chromosomal integration of the proviral DNA into
the host cell.

In the next three sections, we discuss many of the risk factors and aspects
of the AIDS virus that we foresee as being important to the epidemic and
some that will eventually be found to be unimportant. The future spread of
the virus in the United States and Europe will most likely be through sexual
contact and drug needle sharing. A model of the transmission pattern in
Africa would require also including blood transfusions and perhaps other
factors.

In Section IV, we discuss the growth of AIDS cases in the United States
to date. The total number of cases has grown as time cubed, within a few
percent. We use an extrapolation of this cubic and estimates of the distribu- -
tion of times from infection to AIDS diagnosis to estimate the growth in the
number infected.

In Section V, we present simple models, which are chosen to allow
investigation of a particular set of questions about the epidemic that has
occurred so far in the United States. These questions include the sensitivity
of models to the variation in infectiousness as time since infection, the effect
that random or biased partner choice has on the shape of the epidemic, and
the importance of multiple contacts between partners. In Sections VI and
VII we discuss parameter estimates and present numerical investigations of
these models.

As we discuss the issues that are important for modelers to consider, we
will be providing a logical structure for the diverse data that researchers are
collecting. Also, new questions and insights will arise to guide investigators



420 - : J. M. HYMAN AND E. A. STANLEY

in directing their research to add to the general understanding of this
epidemic.

II. POPULATION RISK STRUCTURE

In contrast to our current understanding of the transmission of malaria
[1, 50], measles [15], rubella [4], rabies [44], and many other diseases
(Anderson and May, [5]), little is known about modeling the behavior of
STDs in the sexually active community. To analyze the HIV transmission
dynamics, the sexual activity and needle-sharing drug use of the susceptible
population must first be understood and modeled. These activities, about
which little is known, pose formidable research questions in themselves.

‘The risk group from which a person chooses partners for sex or needle
sharing is an important social question about which little is known. The
married man who has an affair with a married woman takes a different risk
from one who solicits a prostitute once a year. Both men may have the same
number of new partners each year, but they have chosen those partners in a
very different manner.

Risk also depends on the infectiousness of each contact, Wthh depends
on the type of contact, the use of protective measures, and how far along the
infected person is in the course of the infection. It is perhaps important to
note that the infectiousness of HIV is sufficiently low that the spouse of an
infected person may not become infected until about a year before AIDS
develops [17, 21], so that a person does not necessarily become infected if
his /her long-term partner does.

Some recent information on the amount and type of drug abuse in the
United States is available from the National Survey on Drug Abuse con-
ducted by the National Institute on Drug Abuse. On the other hand, no
large-scale studies specifically aimed at sexual behavior have been conducted
in the United States since the Kinsey studies more than 35 years ago.
However, a number of other studies, such as fertility studies, have included
some questions on sexual behavior or have studied specific groups. Several
ongoing efforts involve searching through these studies for information
relevant to HIV spread (John Gagnon at SUNY at Stony Brook, Wendy
Cain at the National Institute for Child Health and Human Development
[NICHD]). In addition, NICHD is designing and will implement a nation-
wide survey of sexual behavior and needle-sharing behavior specifically
aimed at gathering information about the transmission of the AIDS virus.

Endemicity of the infection also plays a major role. Once the infection
becomes endemic in a group of people, it may spread in that group fairly
rapidly, whereas another group that has few contacts with infected groups
may remain protected for a long time. Age differences, physical distance,
ethnicity, and other social groupings may all provide barriers to the spread-
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ing of infection. Behaviors also vary between different groups of people,
leading to different spreading rates in different groups. :

"The risk-group divisions we have identified as being of possible impor-
tance to the spreading of this epidemic include the following;:

age, :

number of new male partners per year,

number of new female partners per year,

sexual activity group,

number of people with whom needles are shared per year,
population density,

‘zone of the country,

ethnicity or social group, and

cofactors. '

88 N AR xR

Some of these (a, p, z, €) act as barriers to the spread of the disease. That
is, people of similar ages and ethnicity who are living in nearby geographic
regions are more likely to spread the virus among themselves than they are
to other groups. Other factors (7,s, g, d, ¢) determine how the spreading
occurs within social groups.

The transmission of AIDS involves long time scales, and therefore mem-
bers are not frozen into a given risk group once they have entered it. This
flow occurs because behavior changes with age, marital status, knowledge of
infection, changing social mores, and educational efforts and because of
~movement of people between geographic regions. This flow is an additional
source of contact between risk groups.

A. AGE

Age is important for a number of reasons. There is a distribution of ages
at which people become sexually active and presumably tend to migrate first
into more active groups and then into long-term relationships as they age.
Drug use is age dependent. The use of particular drugs, such as heroin, goes
in and out of style and is thus generational (R. Chaisson and A. Moss, UC
San Francisco, personal communication). There are natural barriers to
contacts between age groups, so that the infection will not spread between
age groups as rapidly as within an age group. Social groups, such as high
school or college students, are age dependent. The amount and type of
traveling done also are age dependent. The number of children born with the
HIV infection will depend on the number of infected women who are having
children, which varies with age. Death rates, health, and disease progression
[5, 7] are age dependent.

In regions where AIDS becomes a major problem, as it already has in
central Africa, this epidemic has the potential to deplete the productive age
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groups in the short run and to entirely change the population’s age structure
in the long run [41].

B. SEXUAL ACTIVITY

Risk from sexual activity depends on the probability of choosing an
infected partner as well as on the number and type of contacts with an
infected partner. The probability of choosing an infected partner depends
not only on how many new partners are chosen but also on the manner in
which those partners are chosen. There is a wide variation in the rates that
sexually active people and needle-sharers change partners (see Figure 10 in
Section VI). A small core of HIV-infected, very sexually active people can
drive the epidemic.

Most models for the transmission of venereal diseases [28, 3] have
assumed that all partners are picked at random from the pool of available
partners. This assumption leads to the proportionate-mixing assumption that
the per-year probability of someone with i partners per year picking an
infected partner with j partners per year is i-j-P, /Py, where P, is the
number of infected people with j partners per year and P, is the total
number of partners picked per year. These models also assume that the
pllgbability of infection per partner is the same. However, it is clear that
these assumptions are simplistic.

In our models, we assume that an average probability of infection can be
assigned to each contact. This assumption may not be sufficiently accurate
to predict the spread of HIV, and additional factors may need to be included
in the model. For example, the probability of infection might depend
strongly upon the strain of the virus or on the health of the partners.

There is probably a tendency for people with fewer partners to have more
contacts per partner than do people with many partners. There is also a bias
of like toward like, so that people with few partners tend to choose partners
who also have few partners. Adding these biases into the Anderson et al.
model leads to substantially different predictions from their random-mixing
model with equal risks.

Another aspect of behavior is that most sexually active people, both
homosexual and heterosexual, move in and out of stable partnerships [35].
They may go into the dating pool and have a number of short-term
relationships with a small number of contacts per person before forming a
new partnership, or they may go directly from one partnership to the next
(with or without some overlap). Sexual partnerships have a wide variation in
their duration. The duration of each partnership depends on the sexual-activ-
ity groups of the partners involved. The more sexually active people in the
dating group form shorter partnerships than the less-active individuals. A
similar dependence holds for the duration of abstinence periods. The dura-
tion of the longer-term partnerships tends to increase with age. A recent
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An individual who picks partners at random; most
partners also pick at random, and have few
contacts/partner. )

An individual who, when dating, has few partners and
few contacts /partner; most partners are also daters.

C=->20->C> 0O >

An individual involved in medium-term relations with
a few partners who have similar behavior.

# Long-term relationship + affair.
Long-term relationship + random partners picked
from a high-activity class.

Example of a contact network along which HiV could
spread from a sexually active infected (E) to an
individual in a steady partnership (C).

Fic. 1. Different individuals (indicated by circles) may have very different sexual
contacts (indicated by the lines).

model for the spread of AIDS by Klaus Dietz [14] incorporates some of
these flow ideas using survey data of the West German population.

Also, a fraction of the population maintains long-term relationships and
then has a certain number of outside partnerships. The risk to individuals
from longer-term relationships depends on the outside partners or the
previous partners of their mates. Some possible behavior classes are shown
in Figure 1.

Although the data are poor at this point, the infectiousness of a contact
may depend on the type of contact (man-man, woman-man, man-woman,
anal-genital, oral-genital). Infectiousness also depends on other cofactors
such as venereal diseases and the use of protective devices (condoms,
nonoxynol-9). We need estimates for the prevalence of these cofactors, how
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frequently protective devices are used, and how much behavior can be
influenced by factors such as education, knowledge that a partner or oneself
is infected, and fear of infection. Also, individuals with higher-risk behavior
are more likely to seek testing and discover their infection than are those
involved only in low-risk behavior. As public awareness increases and more
people know they are infected, we speculate that the resulting drift toward
safer sexual practices will slow the spread of the virus. v

The infected-spouse studies [17] and the African epidemic demonstrate
that the virus can spread through a heterosexual network. Growing evidence
suggests that the fast heterosexual spread in Africa is partly due to a high
prevalence of cofactors, such as genital ulcers caused by chanchroids, which
may greatly increase both infectiousness and susceptability. In the developed
world, such severe cofactors are virtually nonexistence. However, other
cofactors are present, such as gonorrhea, syphilis, and herpes, that may
increase transmission rates less dramatically. Without data on infectiousness,
with and without cofactors, male to female and female to male, it is
impossible to tell whether or not a self-sustaining heterosexual epidemic will
occur in the United States. The few current heterosexual AIDS cases are
primarily driven by the epidemic among homosexuals and IV drug users. A
slowly growing heterosexual epidemic could be masked by cases due to
contacts with these groups. It is unlikely that models can distinguish between
these two possibilities without estimates of transmission probabilities from
partner studies (e.g., [17, 45]).

Although approximately the same number of men as women are infected
with HIV in central Africa, and in some groups of military recruits in the
United States [9], this fact does not imply that the virus is transmitted with
equal efficiency between men and women, even in the presence of cofactors
[40]. The numbers of partners that each has may also play a big role. The
infected women may have had, on the average, far fewer partners than the
infected men, but there may be a pool of infected prostitutes with whom
many men have contact. Also, the presence of other STDs may be a more
important cofactor in a heterosexual transmission network than in a homo-
sexual network.

~ Consider HIV transmission through a simplified heterosexual network,
where one male infects one female, who in turn infects another male,

Br Bi Br
M->W->M->W-,

and a simplified homosexual network, where each male infects one more and
all are assumed to engage with equal frequency in both insertive and
receptive anal intercourse, B
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and where the transmission (infectivity) rates are

‘B, for man-to-woman (receptive),
B; for woman-to-man (insertive),
a, for man-to-man (receptive), and
a; for man-to-man (insertive).

This heterosexual transmission chain looks like several resistors in series with
resistivities B, and B;!. For the M — W — M chain, the two “resistivities”
add, giving an average per-link resistivity of (8, '+ 8;!) and thus an
average transmission rate per link of 8=28.8, /(B. + B;). For the homosex-
ual chain the transmission routes are in parallel and the average transmission
rate per link is a=a, +a,. A slightly more realistic model, where each
person can have more than 2 partners, and for which the average transmis-
sion rate is somewhat modified, is discussed in Section V.A.

If, as some have proposed, in the absence of other cofactors such as STDs
the probability of being infected during insertive intercourse is much less
than in receptive intercourse (that is, B, < f,, a; < @,), then the average
transmission rates would be B = 28; and a = a,. The heterosexual transmis-
sion rate would be governed almost entirely by W — M, the insertive
infectability, whereas homosexual transmission would be driven by the faster
receptive transmission rate. Thus, the most effective strategies to slow the
epidemic in the two transmission networks might be quite different. For
example, suppose that spermicides such as nonoxonol-9 were found to be
more effective in reducing B; and «; than in reducing B, or a,. Under this
scenario, the use of spermicides could have a dramatic effect on the
heterosexual spread but only a minor effect in the homosexual network,
where, for example, condoms may be necessary to reduce both a; and «,.

Also, because other STDs may significantly raise the insertive infectivity
B; from a woman to a man, one of the most effective strategies for slowing
the epidemic in the heterosexual network may be to launch a major campaign
to reduce the incidence of other STDs. The recent dramatic increase
(approximately 29% per year) of syphilis cases in the United States has been
attributed by some to the transferring of STD educational and treatment
dollars to fight the AIDS epidemic. This transfer may be a counterproduc-
tive approach and may result in a faster-spreading heterosexual epidemic.
Once the relative infectivities are approximately known, then the model will
be able to give guidance in answering questions such as whether it would be
more effective to spend educational funds until, for example, 90% of the
heterosexual contacts use condoms or to reduce the incidence of other STDs
by 50% through contact tracing and treatment.

C. DRUG USE

HIV is transmitted by sharing needles to inject drugs. Partly because
many prostitutes are drug users and partly because most drug users are
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heterosexuals, the spread of HIV infection in the needle-sharing community
is seen as a major source of HIV for the heterosexual community at large.
Some important questions are what fraction of the population engages in
needle sharing in different age groups and regions, how the drug users are

distributed according to frequency of needle sharing, and how much bias

exists toward sharing repeatedly with the same people and against sharing
with strangers [19, 7]. All of the mixing questions raised about sexual activity
also apply.

D. POPULATION DENSITY

The results from serological tests conducted by the Department of
Defense (DoD) on potential recruits indicate that the prevalence of HIV is
highly correlated with population density [9]. There are a number of reasons
for this, each of which needs to be considered. Unlike many non-STDs (e.g.,
measles, influenza), the rate of infection should not be strongly dependent
upon the density of the host; however, people in large cities are less
constrained than those in small towns. Endemicity also plays a role, because
the virus will be spread only when it is present. Finally, physical distance
creates barriers between people, so mixing may be more random and
homogeneous in denser areas. The spread of the virus into the regions
surrounding the major population centers is a diffusionlike process in which
the diffusion rate is a function of the population density.

E. ZONES

As mentioned above, isolation provided by distance provides another
barrier to the epidemic. Behavior may also be somewhat regional. For
example, the prevalence of shooting galleries in New York City may be a
major reason why HIV has spread more rapidly within the New York City
drug community than in the California drug communities, where shooting
galleries are less common. In a risk-based drug-use model (as described in
Section V.B), the partnership (needle-sharing) mixing distributions would be
different for New York City than Los Angeles, and the predictions would be
very different. Also, to understand how rapidly the HIV infection will spread
into different regions of the country, we might want to model how each
region is connected to every other region by the movement of people.

Infection through blood transfusions caused a wide geographic spread of
the virus. In the spring of 1985, before stringent screening measures were
applied to blood donors, 0.25% of the blood tested by the ELISA test was
seropositive [10]. Infected blood led to a widespread scattering of HIV
infections throughout the United States, which might have a major impact
on the future course of the epidemic, even though only a tiny proportion of
the population was infected this way. Today, most of the HIV-tainted blood

- |
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in the United States is identified by the ELISA test; therefore, current
blood-transfusion infections may have a negligible effect on the course of the
epidemic. ' ‘ '

F. ETHNICITY AND SOCIAL GROUP

The number of AIDS cases that have occurred, especially those in women
and children, are disproportionately greater in the Black and Hispanic
populations than in the rest of the population [49]. The DoD data from
military recruits also show this bias [9]. It is not understood why the
infection has spread more rapidly into these populations. There are, how-
ever, social barriers to contacts between different racial groups, so it may
largely be a question of endemicity. In other words, once the virus is
introduced into a group of people, it can spread only in that group until a
contact with a member of another group is encountered. If there are not
enough contacts between racial groups, the virus can spread entirely in one
group without extending into another. These groups need not be only racial;
any isolated group with few outside contacts could experience an isolated
spread. For example, students at the same university might form such a
group. Lifestyle differences in these groups could result in different parame-
ter values for the other risk factors.

We may divide individuals within a group into two classes: social and
nonsocial. The nonsocial individuals interact only within their group, whereas
the social individuals have contacts both within and outside their particular
group. This approach has also been used to model other infectious diseases
such as hepatitis [51, 52].

G. COFACTORS

Cofactors, such as diseases and practices that cause skin lesions or
impairment of the immune system, may influence a person’s susceptibility to
becoming infected and, once infected, that person’s infectiousness and/or
disease progression. As yet the data on the effect of cofactors are poor, but
numerous cofactors including syphilis, gonorrhea, herpes, drug use, and
malnutrition have been proposed. These cofactors are more common in some
groups, such as individuals in urban slums, than in others and could allow
for more rapid spread in those groups than would occur in the absence of
cofactors. For example, infectivity estimates from middle-class spouse/pair
studies may not give correct estimates when other venereal diseases are
present. It may be necessary to take account of the distribution of cofactors
in the population to fully understand HIV spread.

In central Africa, cofactors probably account for the rapid heterosexual
spread. Untreated genital ulcers, often caused by chanchroid, which are rare
in developing nations, greatly increase infectivity.
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III. DISEASE PROGRESSION

- Studies of the long-term effect of the HIV virus on the immune system
are all reaching similar conclusions: HIV causes a slow but progressive
decline in the immune system. The rate of this decline varies from person to
person, and some people appear to stay on a plateau for long periods.
Short-term upward fluctuations in measurements of quantities such as the
T-4 helper cells are often observed, but most infected immune systems
decline over the long run [8, 48, 43]. Autopsies of AIDS victims show that
HIV also crosses the blood brain barrier in a large percentage (around 80%)
of infected persons and causes a wasting away of the brain; it is not yet clear
if this deterioration is a slow progression or if it happens late in infection
[16].

When the immune system is sufficiently compromised or when the brain
is sufficiently affected, symptoms appear. Initial symptoms of immune
. problems range from the very mild (so-called AIDS-related complex [ARC],
or generalized lymphadenopathy, or even just poor health) to KS and the
devastating opportunistic infections classified as AIDS. Deterioration of the
brain leads to blindness and Alzheimer’s-like dementia. Eventually, death
follows. It is not clear what the appearance of KS has to do with HIV-
stimulated immune-system decline. KS may occur at any point more than 1
year after infection, independent of immune-system breakdown. It is much
more prevalent in homosexual men from New York City than in other
groups. It is often not the eventual cause of death; the immune-system
decline continues until an opportunistic infection leads to death.

A. TIME FROM INFECTION TO AIDS

- This picture of progressive immune-system decline indicates that most
infected individuals eventually die from HIV-induced illness and that the
probability that an individual will develop AIDS depends on how long he
has been infected. Both the time from infection to diagnosis of AIDS and
the time from diagnosis to death are extremely variable. HIV-infected adults
have developed AIDS in less than 2 years, and some have remained well for
more than 8 years. The distribution of times between infection and clinical
AIDS is only partially known because of the long times involved. In studies
of patients for whom an estimate of date of infection can be made (such as
hemophiliacs), the percentages developing AIDS in any given year after
infection are either still increasing or are remaining roughly constant, which
leads to an estimate of an average time to AIDS of at least 8 years. A
possible distribution of times from infection to clinical AIDS is shown in
Figure 8 (Section VLA).
Any model that is going to predict the number of infected people and
AIDS cases must take into account the wide variability in duration of
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infections proceeding AIDS. This is necessary to predict accurately the
correct distribution of people developing AIDS and to ensure that infected
‘people in the model remain infectious for lengths of times that reflect the
actual infectious periods. A person who is healthy but infected for a long
period has a higher probability of infecting someone else than a person who
develops AIDS relatively early.

Similarly, there is a wide distribution of times between diagnosis of AIDS
and death. Death may occur immediately after diagnosis or more than 6
years later, with an average patient lifetime of 12-14 months. In the future,
these times will depend strongly upon the effectiveness of therapy such as
the use of AZT. Keeping track of time since infection allows us to use “best
guess” estimates for these distributions. Another effect of the long duration
of infection is that as infection progresses, people will ascertain their
seropositivity and change their behavior.

B. VARIABLE INFECTIVITY

Infectiousness of individuals carrying HIV varies as the course of the
disease progresses. In studies of infected hemophiliacs and blood transfusion
recipients, few of their spouses have seroconverted sooner than a year before
the infected individuals developed AIDS or ARC symptoms [21, 17]. This
time lag indicates that infectiousness is often minimal until late in the course
of the infection. However, some partners have been known to convert
immediately [56].

The infectivity may be related to the amount of free virus in the
circulatory system of an infected individual. Studies indicate that the amount
of free virus goes up in the first few weeks after infection [18, 54] and then
goes down as antibody response occurs, remaining at very low levels for
years. There may be sporadic bursts of free virus and hence of infectivity in
these intermediate years because of other challenges of the immune system.
As the immune system collapses in the year or so before AIDS develops,
viral counts return to high levels (Robert Redfield, private communication;
[36]). This progression is schematically shown in Figure 2.

It is clear both from the infectivity studies of Grant et al. [24] and Padian
et al. [45] and from our numerical studies that the chances of infection from
a single sexual contact must be quite low (less than about 0.01) for most of
the duration of infection, or else the virus would have spread much faster
than it has. If the initial infectious period does exist; it is important that it be
well defined for infected individuals with many contacts, because it has a
large effect on the rapid-growth phases of the epidemic. This effect is
especially strong when a disproportionately large percentage of infected
people have only just become infected.

Such a radical time variability of mfectlousness raises an additional
possibility. We know that the number of infected people has grown rapidly



430 . J.M. HYMAN AND E. A. STANLEY

Probability of infection per contact
(o]
1

|

» !
2wk‘sr_ l«— ARC —>}+— AIDS—>]|
-

to ta b
6 mo's

Time since infection

F1G. 2. Schematic of the infectiousness of a sexual contact with the same individual.
Initially, the virus quickly multiplies but then is suppressed by the immune system.
Towards the end of infection, viral counts again become high, coincident with immune-sys-
tem breakdown. This infectiousness curve is based on relative amounts of HIV in the
infected individual. Also, spouse/pair studies indicate the infectiousness of an individual
must be low during the first few years after the initial immune response.

during the early stages of the epidemic, with doubling times significantly less
than a year. It may be that infection has primarily been transmitted from the
infected to the noninfected in the early time interval of roughly 2-6 months,
with the period of low infectiousness, 0.7-5 years in Figure 9 (Section VI),
contributing to fewer total infections. The periods of increasing infectivity,
1-3 years before AIDS, have a reduced relative contribution because of the
rapid growth of the infected population during the low-infectious period.
This reduced contribution may be especially true because the people with
large numbers of partners were infected first and could have encountered
many people during the initial period. However, as the growth of the
epidemic slows, and the epidemic moves into groups with less than 1 partner
per 6 months, contacts with people in the later disease stages will become the
primary transmission route.

Because the disease is much more infectious in the later stages, widespread
screening and voluntary testing to identify the HIV carriers (before they
enter this stage) will be more effective than if the infectivity were constant.
Any cost/benefit analysis for testing must take variable infectivity into
account. Changing an individual’s behavior before he or she enters this very
infectious stage could be one of the most effective means of slowing the
epidemic.
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C. CLINICAL MANIFESTATIONS

Models could differentiate between the various clinical manifestations of
AIDS based on different conversion probabilities. At this time we do not
differentiate but have a lumped conversion-probability distribution, which
peaks between 7 and 10 years and assumes every infected individual eventu-
ally converts to AIDS. The conversion time may be longer in healthier and
younger populations, and medical advances may lengthen the conversion
time. '

D. GENETIC VARIATION

The genetic variability of HIV DNA sequences indicates that the virus is
mutating 5 to 10 times faster than an influenza virus [53, 25]. The variability
is due primarily to duplications, insertions, or deletions of short segments
and point mutations. The various strains may have dramatically different
resistance to vaccines or may lead to different etiologies (e.g., dementia, KS
versus PCP). If differential viral strains have different etiology, then some
strains may eventually win out over others. For example, strains with longer
incubation times, those that are more infectious, strains such as HIV-2 that
are not recognized by the ELISA test, or those that least reduce the health of
the infected person when they are most infectious may eventually spread
faster than other strains.

IV. ANALYTIC FORECASTING

The accumulated number of AIDS cases diagnosed in the United States
as reported to CDC, A(¢), is not growing exponentially but is well ap-
proximated by the cubic polynomial

A(t) =174.6(t —1981.2)>° + 340 + 2% (4.1)

for times ¢ >1982.5. The rate of new AIDS cases per year, 4’(t), is similarly
approximated by the derivative of Equation (4.1a), the quadratic equation

A'(t) =523.8(1 —1981.2)*". (4.1b)

This polynomial growth is evident in nearly every CDC-defined category,
including risk behavior [Figure 3(2)], age, region of the country [Figure 3(b)],
and ethnic group [30]. The AIDS cases approximated by Eq. (4.1) are based
on the pre-June 1987 AIDS definition and do not include dementia and
wasting syndrome.

Because the cumulative growth of AIDS cases is cubic [Equation (4.1a)],
the cube-root reference frame shown in Figure 3 is a natural frame to
identify changes in the epidemic. Similarly, the incidence data should be
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FiG. 3. (a) The } power of the CDC AIDS cases is linear in risk categories 1-5,
indicating an approximate cubic growth, a(¢— ¢,)>. The risk categories are 1, homosexual
male; 2, IV drug user; 3, homosexual and IV user, male; 4, hemophiliac; 5, heterosexual
contact; 7, transfusion; 9, other or unknown. Here the lags in reporting time have been
approximated and corrected. (Data analysis by C. Qualls.) (b) The % power of the CDC
AIDS cases is linear in different regions of the United States, indicating an approximate
cubic growth, a(z— ty)°. The metropolitan regions ar~ 1, northeast; 2, central; 3, west; 4,
south; 5, mid-atlantic. Region 9 is nonmetropolitan, ana region ( is unknown. Note that
the nonmetropolitan AIDS cases in region 9 did not grow as a cubic until 1984. (Data
analysis by C. Qualls.)
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studied in the square-root reference frame. The data are also linear in a
log-log reference frame where time has been shifted so ¢ = 0 corresponds to
1981.2. In the log-log reference frame the exponents can easily be de-
terminied by the slope of a linear least-squares fit. If the data are plotted in a
log-linear reference frame, then extrapolation of future cases becomes much
harder and anomalies such as for region 9 in Figure 3(b) are less evident.

Because the growth is polynomial [Equation (4.1a)], the doubling time is
not constant but is increasing linearly; setting A(z+¢,) =2A4(¢) in Eq.
(4.1a) defines the doubling time ¢, = 0.26(¢ —1981.2) years. This increasing
doubling time has led some observers analyzing the data in a log-linear
reference frame to incorrectly state that the epidemic is leveling out, when in
the cube-root reference frame (Figure 3) it is clear that the trends have been
~ consistent for the past 5 years.

The cubic polynomial growth can be explained by a wave of infection
progressing from populations with high-risk behavior into populations with
lower-risk behavior. For example, if individuals with risk behavior r (pro-
portional to the number of sexual partners or needles shared) are infected
through interactions with people of similar behavior and if the population
is distributed as a decreasing function of risk behavior [e.g., N(r)=
Ny(1+ ar)™*, where N(r) is the number of individuals with risk r], then the
highest-risk population is quickly infected, giving rise to an initial transient
exponential growth. This growth quickly becomes polynomial as the satura-
tion wave of infection moves into lower-risk (but still high-risk) behavior and
finally slows to an e/’ growth rate (see Section VILB). The polynomial
growth is analyzed in more detail in [11].

If C(7) is the probability that a person infected with HIV at time ¢ — 7
has developed AIDS by time ¢, and if I’(¢) is the number of people infected
per year with HIV, then the cumulative AIDS cases reported to CDC
satisfies the relationship

A(1) =pf0°°c(7)1'(t— 1) dr, (4.22)
or, because Cc(0) =0,
A(t) =p /0 () I(t=1) dr, (4.2b)

where p is the fraction of infected individuals eventually reported to CDC as
AIDS cases. Thus p is the product of the probability that an infection will
result in a pre-1987.5 CDC-defined AIDS case (which excludes dementia
and slim disease) times the probability it will be reported to CDC. The
probability that an AIDS case will be reported to CDC is the product of the
probabilities that it will be diagnosed and, once diagnosed, that it will then
be reported. Using estimates of C’(7), the probability density function for
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conversion to AIDS 7 years after infection, we can solve Equation (4.2) for
~ I'(¢). In these calculations we used p=0.72 and the Weibull probability
density function for C’(7) described in Section VI [Figure 8, Equation (6.1)],
unless otherwise stated. »

Solving equation (4.2) for I'(¢) is ill posed; small changes in A(¢) or C(7)
may cause large changes in I'(¢). We solved both Equations (4.2a) and (4.2b)
by a least-squares quadrature method where I’(¢#) was approximated by
piecewise cubic Hermite polynomials (splines). A(7) was extrapolated using
Equation (4.1). The calculated solutions agreed within 5% when 10 to 30
piecewise polynomials were used. Below 10 piecewise polynomials the ap-
proximation was too coarse, and above 30 the ill-posed nature of the
problem created high-frequency oscillations in the solution.

The cumulative number of infected individuals, I(¢), was most sensitive
to the extrapolated estimates of 4(?), the fraction of the infected population
that eventually is reported to CDC as AIDS cases, and the most likely
conversion time to AIDS, which we call 7, [C"(1,) =0]. After the initial
transients, 7(¢) was relatively insensitive to the width of the distribution
C’(7) about 7,. The uncertainty that an HIV infection will result in an AIDS
case reported to CDC is a linear factor and changes the estimates for the
infected by p~!. We now investigate the effects that these uncertainties in
each of C(1), the fit of Equation (4.1), and the extrapolation of Equation
(4.1) have on the estimates for the infected population.

Because so few people develop AIDS in the first 2 years after infection, it
is clear that today’s AIDS cases cannot be used to estimate the number of
people infected in the past 2 years with any accuracy at all. In fact, the error
estimates for I’ near (¢, —7) explode proportional to the relative error in
A(z,) times C (7). Here ¢, is the maximum time at which A4(¢) is specified.
More generally, a relative error in I'(t, — 7) of \

&r(7) =€, C 7Y (n)[1- C(N) I(10) A7 (56) ~1]

can be introduced in Equation (4.2) and the relative values of A(¢, — 7) will
change less than €, for 7 > 0. In Figure 4 we plot the solution I,(#, — 7) of
(4.2) using (4.1). Also plotted are the upper and lower error bounds,
I (ty—7)=1I3(ty — 1+ € (7)], for ¢,=001, ¢ =1988. These error
bounds for I’(¢) and hence I(¢) due to errors in A(¢) are small for r <1984
but gradually increase and explode between 1 and 3 years ago.

The upper and lower bounds I} and I’ for I'(¢), t<t,, in Figure 4
would result in very different future values for A(¢), ¢ > ¢,. To reduce the
error bounds on I'(t), t<t,, we must incorporate assumptions on the
behavior of A(?), t > t,. That is, to estimate the number of infecteds at time
ty, we must first estimate future AIDS cases for times up to, say, ¢ =t, +
(1/2)7,. These extrapolations can then be used in Eq. (4.2) to estimate the
infected population I(¢) for t < ¢,.
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Fi1G. 4. (a) The upper and lower error bounds I, and I’ for I'(¢) from the inversion
of Equation (4.2) using the Weibull conversion-time distribution of Medley et al. [42]
explode as ¢ approaches 1987 when A(r) is not extrapolated beyond 1988.0. These three
estimates for I’ predict cumulative AIDS cases that agree within 1% for 7 <1988 but are
very different for ¢ >1988, (b) The error bounds for the cumulative number of infecteds,
I(t), corresponding to the integrals of I’ in (a).
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Fi1G. 5. The rate of new AIDS cases was extrapolated using (4.1b) with a maximum
relative error of +10% per year after 1988. The cumulative infected population I(t) was
then estimated for r <1994. Here p=0.72 and C’(7) is defined in Figure 8 (Section VI).

Even though the cubic extrapolation in Equation (4.1) closely agrees with
the data over the past 5.5 years, it is purely an empirical fit to these data.
This approximation is not based on transmission mechanisms and therefore
does not include any effects of behavior changes that are known to have
occurred, saturation of infections in certain risk groups, the screening of the
blood supply, the infection starting in new populations, or any other of the
major influences on the future course of the epidemic. Because the underly-
ing transmission dynamics are changing, we do not expect the cubic to
continue to hold indefinitely, and hence the traditional statistical confidence
bounds are not an appropriate tool to estimate errors in forecasting future
AIDS cases. Therefore, we have kept the error analysis simple in our
investigations of the sensitivity of the estimates of the infected population on
the future-AIDS-case projections. To allow for a relative error of € per year
in the rate of AIDS cases per year, we multiply Equation (4.1b) by
(14 €)1 for £ >1988. In Figure 5 we demonstrate the sensitivity of the
estimated infected population to future AIDS predictions by solving (4.2) for
I, with A%, (¢)= A'(¢)(1+£0.01)" %%,

To investigate the effects of the uncertainties in C’(7), we extrapolated
the AIDS cases using Equation (4.1) and compared the solutions of Equa-
tion (4.2) in Figure 6 for four different conversion functions: (a) the Weibull
distribution shown in Figure 8 (Section VI), which has a most likely time of
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Fi1G6. 6. Equations (4.2) were solved by extrapolating the cumulative AIDS cases in
Equation (4.1) and setting the reporting fraction p = 0.72. After some initial transients, the
solutions are insensitive to the shape of the conversion-time distributions as long as the
most likely conversion times agree. (a) (solid line) Weibull; (b) (short dashes) 8-function at
7.5 years; (c) (dash-dot) step function, 2-14 years; (d) (long dashes) 8-function at 12 years.

74 =1.5 years and a median time [C(7) =3] of 8 years; (b) a delta function
at 7.5 years (that is, everyone infected develops AIDS in exactly 7.5 years);
(¢) a step function that is 0.083 for 7 between 2 and 14 years and 0 otherwise
(there is no most likely time; the median time is 8 years); and (d) a
d-function at 12 years. The solutions for the number of infecteds for the first
three of these agree within a few percent, as shown in Figure 6.

As the width of C’(r) approaches zero (that is, a 8-function), then the
solution of Eq. (4.2) approaches.

I(t)=p 'A(t+1,). (4.3)

This estimate can be used as a rough approximation for I(¢), even for fairly
wide distributions C’(7), as demonstrated in Figure 6. This approximation
can be used to estimate the number of infected individuals in January 1988.
For example, if we assume that 80% of the infected individuals develop
CDC-defined AIDS and that 90% of these are reported to the CDC, then
p=0.72.1f 7, =9 years and the number of AIDS cases in 1997 ( =1988+ 1,)
is 85% of the extrapolated cubic approximation (4.2), then the current
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FiG. 7. Because the number of people infected with HIV is growing rapidly, the
distribution of time since infection in a group diagnosed with AIDS in any time period
does not reflect the distribution of times from infection to AIDS. Multiplying I'(z, — 7) by
C'(7) gives the distribution of AIDS cases, A(fy,7), occurring at time z, that were
infected at time #, — 7. Note that because I’(¢) is increasing, the most likely time to AIDS
(7% years) is longer than the most likely length of infection for current AIDS cases (4%
years).

cumulated number of infected individuals is

1(1988) = %% [174.6(1988.0+ 9—1981.2)° + 340] =810,000. (4.4)

We remark that if only 40% of the infected individuals develop CDC-defined
AIDS (as was thought a few years ago) then, even though the predicted
AIDS cases are the same, this approximation estimates that there would be
1,600,000 people infected with HIV in the United States.

Although the numbers of AIDS cases for different conversion-time distri-
butions in Figure 6 agree, the length of times that the current AIDS cases
have been infected would have very different distributions. Most of the
AIDS cases diagnosed today were infected 3-5 years ago. This time is
shorter than the most likely time to convert to AIDS because the HIV-
infected population is growing rapidly. In Figure 7 we give an example
where the rate of growth for the HIV-infected population I'(¢) is quadratic
and the most likely time to convert to AIDS is 7.5 years. The distribution of
patients currently developing AIDS, A'(¢,,7), is the product of the two
dashed curves, C’(7)I'(t, — 1), and hence is highly skewed toward the early
conversion times.
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The current most likely time since infection for current AIDS cases in
Figure 7 is 43 years. This would imply that we should soon see a slowing of
AIDS cases in transfusion recipients. Also, the sexual-behavior changes in
1983-84 in the San Francisco area should just now be reducing the growth
in the homosexual cases. .

Note that, even when the time since infection is known, A'(z,7) is
insufficient to determine C’(7) unless an estimate of I’(7) can be made. For
the transfusion-infected patients, the shape of I'(r) could be ascertained if
the contaminated fraction of the blood snpply were known as a function of
time.

Simplified analytic forecasting models such as these can give good esti-
mates of how many people will get AIDS next week and give fair estimates
for the next year, but they are insufficient to accurately predict the course of
the epidemic 3-5 years from now. The only way to make reliable long-term
predictions is to include far more detail on the epidemiology and sexual -
- behavior through full-scale computer models.

V. SIMPLIFIED MATHEMATICAL MODELS

A complete model of the spread of the AIDS virus in a sexually active
and IV-drug-using community must account for the complicated interactions
between people. However, one must begin by understanding the behavior of
simple models before going on to explore more complex ones. Two different
approaches to this modeling have been developed. One is based on ascertain-
ing the risk to an individual [28, 3]. The other is based on population-growth
models in which individuals form and break partnerships. In this approach,
paired individuals become infected through multiple contacts when one
partner is infected, but remain protected for the duration of the partnership
if both are uninfected and also cannot become infected between partnerships
[14, 13]. In the risk-based models, the population is easily stratified accord-
ing to the amount of risk individuals incur, but they do not model well the
risk (or protection) of longer-term relations. On the other hand, the partner-
ship models are more difficult to stratify so as to take account of the wide
variations in risk behavior within the population. In this paper, we are
primarily concerned with modeling HIV spread in high-risk populations, so
we use the risk-based approach. We do, however, account partially for
partnership duration by allowing a variable number of contacts in each
partnership.

In this section, we describe several models for the sexual spread of HIV in
a population structured only according to the rate of acquisition of new
partners; similar models would hold for needle-sharing associated with IV
drug use. We begin with a model that neglects all heterogeneities in the
susceptible and infected populations, present a similar model for heterosex-
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ual spread, address the variations due to progression of infection, and finally
~ split the population according to risk behavior. Parameter estimates for these
models will be discussed in Section VI, and their behavior will be explored in
Section VII. ‘

The models discussed here do not incorporate behavior changes, although
that is easily added. We assume that this population would be stable if HIV
were not present, with migration and maturation into the group balancing
deaths and aging processes that remove people from the group. We assume
there is no immunity, so all uninfected members are susceptible to infection.
Once infected, a person remains infected, infectious, and sexually active until
AIDS intervenes. In all but a simple heterosexual model we do not dis-
tinguish the sex of the members of this at-risk community. The assumptions
involved in the development of these models will be described in more detail
in a later report where a derivation of the probability-of-infection function is
given.

A. T-MODELS

In our models, we divide this at-risk community into uninfected suscepti-
bles, infecteds without AIDS, and diagnosed AIDS cases. We assume that
before the introduction of the AIDS virus, there was a balance between a
constant maturation and migration rate into the community and a constant
rate per individual of retirement or death out of it; these processes continue
in the presence of AIDS. Susceptibles become infected through sexual
contacts or IV needle-sharing with partners whom they choose randomly, at
a fixed rate, from the susceptible and infected portions of the community.
Infected individuals eventually develop AIDS, become sexually (or needle-
sharing) inactive, and die at an accelerated rate.

In the simplest model where

t = time,
S(¢) =number of susceptible individuals,
I(t) =number of infected individuals without AIDS,
A(t) =number of AIDS cases,
Ar(t) =accumulated number of AIDS cases,
N(¢) =number of susceptible and infected individuals without AIDS,
p =death rate of individuals without AIDS,
0 =death rate of individuals with AIDS,
v =rate of developing AIDS of infected individuals,
i =probability of infection from a sexual contact with an infected,
¢ = average number of contacts between sexual partners,
r =average number of new sexual partners per year, and
S, =population size before the AIDS virus was introduced.
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we have
B _(5,-5(0) A1) S(2),
AL _\(1)$(1)=(y+ ) I(2),
(5.1)
dA(’) (1) = 84(1),
dAT(t)_ I(t)
with
A(t) =icr I(1)

N(t)’

N(t) =S(2)+I(2),

where A(?) is the rate of infection per susceptible. [Note that we changed
notation from Section IV, where I(¢) and A(¢) were cumulative quantities,
rather than current numbers as they are here.]

This model portrays a community in which people mature or migrate into
the susceptible community at a constant rate u.S,. People without AIDS die
(or become inactive) at a constant rate, with p~! their average life ex-
pectancy. Infection occurs through sexual contact with an infected partner.
Partners are chosen at random, from all susceptibles and infecteds, at an
average rate r per year, so that the probability a partner is infected is the
fraction of infecteds in the population. Infecteds develop AIDS at a rate v,
and AIDS cases have a decreased life expectancy 8 1.

This simple model has been presented and analyzed by many authors for
the spread of various sexually transmitted diseases, including AIDS (see, for
example, [28, 3]).

Equation (5.1) can be modified to model purely heterosexual spreadmg by
splitting the population according to sex and including the partnership
balance relationships. These balances are necessary to take account of
situations where there are not enough women so that men cannot have as
many partners as they might like, and vice versa. A symmetric model that
satisfies the condition that the number of female partners equals the number
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partners, and where we define
ST =( W, My): initial populations of women and men,
ST=(w(t),m(t)): susceptibles,
IT=(W(t), M(t)): infecteds,
AT-(W;(t), M,(t)): AIDS cases,

rT=(r,,r): average desired number of male (7,,) or female (r )
partners the women or men have per year,

I"=@,,i,): infectiousness of a contact with a woman (i) or a
man (i,,),

~ again gives the system in Equation (5.1). Here we have used the superscript
T to indicate the transpose operator. The rate of infection per susceptible is

() = (i M, i W) Terr, [(s+ DT #7] 7, (5.2)

and the product AS in Equation (5.1) is defined as (A,w, A,m)T
The initial growth of infecteds in both of these models is exponential,
with

(1) = Lel*~v—m1,

where a = icr for the model in Equation (5.1) and a= cr,r,
(i i, Womo)*(r, ST ) ! for the model in Equation (5.2).

The simplistic choice of A in Equation (5.2) illustrates the complexity
introduced by balancing male and female partners. Adding additional struc-
ture, such as risk behavior or age, complicates the balance equations even
 more. Currently, there is very little information on male-female mixing
patterns. If the solutions are sensitive to the different balance equation
assumptions, then more data will be essential.

These two models assume, among other things, that all contacts with
infected persons are equally infectious throughout the course of infection. As
discussed in Sections III.LB and VI.B, there may be a wide variation in
infectiousness as the disease progresses. The constant rate of progressing to
AIDS imposes an exponentially decaying distribution of times to AIDS.
However, cohort studies have found that the probability of getting AIDS
increases with time since infection for at least the first 7 years (see Section
VI.A). Thus, a decaying distribution is a poor approximation.

If we include time since infection or AIDS, then variable infectivity and
the distributions of times from infection to AIDS and of times from AIDS to
death may be explicitly modeled. Following Anderson et al. [3], we break
down the infected population I(¢) according to the time 7 since infection,
I(t) = [I(t,7)dr. I(1,0) is now the rate at which people become infected,
and I(¢, ) has the units people /year. Similarly, we distribute AIDS patients
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according to time 7 since AIDS, A(¢) = fA(¢,7)d7. Defining

I ( t,7) = distribution of infecteds according to time 7 since infection.
I(t,7) is the number of people infected per year 7 years before

time ¢,
A(t, ) =distribution of AIDS cases according to time since they devel-
oped AIDS, :
i(1) =probability of infection from a contact with a person infected 7
years ago.

v(7) =rate of developing AIDS at a time 7 after infection,
8(7) =death rate at time 7 after developing AIDS,

we have the system s
d(tt) =p( S —S(1)) = A (1) S(1),
1(2,0) =A(2)S(¢),

AI(t,7)  dI(t,7) _

1) | OET) ()4 ] i(e ),
A(1,0) =foooy( T)I(I,T)‘ dr,

o - 53

aA(att, )+aAgtT, ) = 5(r)a(t,m), (5.3)

A1) =Xr%j:°1(t,7)i(7) ar,

N(?) =S(t)+fO°oI(t,'r) dr

dAr (1)
dt

‘The infectivity, i(), is an average over all individuals infected at time 7 and
is discussed in more detail in Section VL.B. For constant vy, i, and 8, I(?)
and A(¢) satisfy Equation (5.1). Although we have not done so, it would be
easy at this point to vary ¢ and r with time since infection and to thus take
account of behavior changes caused by infection. For transmission in a
heterosexual population, the model in Equation (5.2) is generalized in the
same manner, with the infecteds, I7, distributed according to time since
infection and the AIDS cases distributed by time since diagnosis.

= A(t,0).

B. RISK-BASED MODELS

So far, the models presented do not treat variations in risk behavior
between different people in the group. These models would be sufficient if
the variation in risk behaviors were not large and did not play such a
significant role in the epidemic. However, surveys of risk behaviors in the
homosexual communities demonstrate that the variance in the number of
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sexual partners per year is large. For example, the data for London in
1985-86 have a mean of around 25 partners/year and a variance of roughly
75 (see Section VL.D).

In this epidemic, it is significant that the people with many partners tend
to become infected first and then become carriers who infect less-active
people. This distribution can have a marked effect on the course of the
epidemic and on which risk group is currently at highest risk of infection.

To model risk behavior, we suppose that the population can be distrib-
uted according to their numbers of new sexual partners per year. People
mature into a fixed risk group and leave it only at death. Letting

r=number of new sexual partners per year, _
S(z, r)= distribution of susceptibles according to the number of
partners per year,
I(¢, r, )= distribution of infecteds according to the number of partners
per year and the time since infection,
¢(r, r’)=total number of contacts in a partnership between people
with r and r’ partners per year, and
So(r)= density of people with r new partners per year before the
AIDS virus was introduced,

we have the model

3_5(5’142 =,L[so(r)-s(t,r)] ~A(1,r)S(1, 7),

I(£,0,r) =X(t,r)S(t,7),
aI(té:’r) + aI(i’),,:’r) =—[Y(T)+”]I(t’7’r)”
A(1,0) =£w£)wy(7)l(1,7,r) drdr,

aA(att’T) + aAgtJT) =-8(r)A(1),

dA 0 poo
TI.‘T=./O '/0 y(7)I(t,7,r) drdr,

{rN(1)) =/O°°rN(z,r) dr

(5.4)

N(t¢,r) =S(t,r)+fO°°I(t,'r,r) dr.

We must still define A(z, 7). We discuss below two possible choices: random
partner choice and a bias of people towards partners like themselves. Note
that now S(¢, r) and S,(r) have the units people - time /partners, and I(¢,,7)
has the units people/partners.
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Random Choice. 1f we assume that partners are chosen at random from
the entire population, then A(z,r) is given by

)\(t,r)=m jo c(r,r')r'/o i()I(t,7,r") drdr’.  (5.5)

This model, except with no differences in partnership durations and no
variability in infectiousness [c(r,7’) and i(7) constant], was first proposed
by Anderson et al. [3]. It assumes that the average r — r’ partnership is
- sufficiently short and infectivity is sufficiently low that the probability that a
person has already become infected in the partnership is small, i.e.,

mTax{i('r)} c(r,f’) <1.

Furthermore, the epidemic cannot grow so fast that the chance that a -
partner is infected becomes significantly different during the course of the
partnership from an unmatched person from the same risk group. Anderson
et al. [3] show that the initial growth of this model is determined not by the
average number of partners/year, 7, but instead by 7+ 0%/, where o2 is
the variance about this mean. They then proceed to approximate the model
in Equation (5.5) by replacing r with 7 + o%/7.

Biased Partner Selection. The A(1,r) given by Equation (5.5) takes no
account of the fact that people do not choose partners at random from all
groups but instead prefer partners of a certain type and choose them when
available. Ideally, the partner selection in any model should be based on
sociological data. This question will be discussed in more detail in a later
report; as a first step towards addressing this question we present below a
model with a strong bias of people toward partners of similar risk behavior.

If mixing occurred only with people from the same risk group, then the
virus could not spread between groups and the system in Equation (5.1)
would describe separate epidemics for each value of r. However, this perfect
isolation is unrealistic. The mixing between people of similar, but not
identical, risk behavior leads to diffusion of the virus from one group to
another. Under the assumptions described below, the rate of infection of a
susceptible with risk behavior r, A(¢,r), is approximated by

€r dN(t,r) = 3°N(t,r)
t,r) (5 ar 1T ar2

+er4[5;a—(¢(’;’).)+r o ("5(’;’) )] (5.6)

ar\ ar? r

A(e,r) =¢(t,r)[1—— N
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where

o(t,r) ;/,((’; Z))/ i(r)I(z, 7 r) dr.

This expression for A(z, r) is derived as follows. Under the same assump-
tions on partnership duration, infectivity, and epidemic growth rates as
mentioned above, A(¢,r) can be approximated by

A(e,r) =f0°°p(t, ror)k(t,r,r')dr’

(5.7)
k(t,r,r))=c(r, r)f z(T)I(tTr)) ‘

Here k(t,r,r’) is the probability of being infected by a partner of risk r’.
The partnership function p(¢,r,r") defines the rate a person of risk » forms
a sexual partnership with a person of risk ’. For random partner choice, this
rate is the product of the rate of partnership formation, r, and the fraction
of available partnerships that are with people of risk #’, F(r,r’):

Prandom(t’ r, r,) = rp;andom(r7 r,)a

Eandom(r’r!) =r,N(t’r,)[<rN(t)>]—1

To account for partnership biasing, F,, 4.m(7,7") is determined by the
fraction of partnerships from r’ that are both available and acceptable.
Thus, if partners of risk ' are accepted by people with risk r with a
frequency f(r, r’) and partners of risk r are accepted by people with risk 7’
with frequency f(7’,r), then the fraction of partnerships available and
‘acceptable to a person of risk r is

(5.8)

-1

F(r,r) = f(r', 1) f(r, 7)) "N (s, r’)[ I (e f(r, FYN(t, #7) dr”

- There is, however, a constraint on p(t,r,r’): the total rate that r—r’
partnerships form, N(z,r)p(t,7,r"), must be equal to the total rate that
r’— r partnerships form. In addition, F(r,r”) must be discounted to take
account of the partner choice that a person from 7’ has at that time. As an
approximation (which may not ensure that people from r have exactly r
partners /year), we take an average, and let

rf(r',r)f(r,7")r'N(t, 1) .
[N S+ () £ )
| (5.9)

p(t,r,r)= (

Substituting Equation (5.9) into Equation (5.7) defines A, r).
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The system in Equation (5.4) with this choice of A(z, r) gives a model that
allows the implications of a wide variety of partner-selection mechanisms to
be investigated. Different acceptance functions f(r, #’) and contact functions
¢(r,r’) can model different social behaviors and forecast quite different
futures for the epidemic. For example f(r,r")=1 implies random partner
selection, and f(r,r") =0 for r# r’ and 1 for r = r’ implies a person and his
or her partner always has the same number of partners.

Diffusion-Risk Model. We want to consider the effects of a strong
selection preference toward partners from similar risk groups, with more-
active people less discriminating than less-active people. As a first step in
this direction, suppose that partners are chosen within r + %r€e!/2, according
to a Gaussian partnership acceptance function

f(r,r) =e =r/8er, (5.10)

In Section VILB, we compare calculations with this choice of f(r,r’) with
the random-mixing model, when variations in 7 are ignored [i(7), y(7), and
8(7) are constant]. If we look at the limit as this acceptable range gets small
(¢—0), and keep only the first correction in €, we obtain the diffusion
expression in Equation (5.6) for A(¢,r) for all 7 < € 1/2 (see [11] for more
details).

If we consider only the initial few years of the epidemic, when few AIDS
cases have yet occurred, birth and death processes can be ignored and we
- can assume p =0, y(7) = 0. Approximating the distribution N(¢,7) = N(r)
by N,/(2F+r)* as in Figure 10 (Section VI), neglecting variations in
infectivity [i(7) =], and taking a single contact per partner [c(r, ") =1],
then Equation (5.4), with A(¢, r) given by Equation (5.6), reduces to a simple
diffusion equation for the fraction in each group infected:

BolLr) _il1-o(1,)]

{m(t,r)+er4[53a—r(v(£;r))—I—raa—:z(v(::;r))]}, (5.11)

where
v(t,r)=1I(t,r)N"'(r).

There are solutions of this diffusion equation (5.11) that have the form
v(t,r)=V(rt) (with any arbitrary time shift, z > ¢+1¢,, allowed), and
numerical simulations show these similarity solutions are strongly attracting
(Section VILB). Note that considering only the fraction infected in each
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group, v(t,r), can give a misleading picture of where the epidemic is
spreading because there are so many more people with lower-risk behavior.
That is, a small fraction of infected low-risk individuals may be greater in
absolute numbers than a large fraction of infected high-risk individuals.

Neither totally random choice nor biased choice only from neighboring
risk groups captures the true behavior of people. In the absence of data,
however, it is worthwhile to postulate these two extremes and compare the
epidemics that each predicts, but we must also look at mixtures of the two
behaviors. In the simulations presented in the next section, there is an
enormous difference between the two extremes. Sattenspiel (personal com-
munication) proposed that a simple way to look at mixtures of the two
behaviors is to take a linear combination of random plus self-preference.
Jacquez et al. [31] have used this idea to examine the transition from pure
random selection to pure self-selection using a model with four discrete
activity levels. They see a large difference in epidemic growth rates, the time
to spread across the different activity groups, and the endemic state when
the pure self-selection term dominates (over 90%).

In sexually active heterosexual communities, there may be a very different
mixing pattern from the ones described here. Also, differences between male
and female mixing patterns must be assessed. Data on clients of prostitutes
should be gathered and examined to understand not only the activity levels
of these clients, but also what their nonprostitute partners are like.

Even within the male homosexual and the IV-needle-sharing communi-
ties, behavior patterns are not this simple. Behavior changes over time, and
people with many partners one year may have only a few the next, or vice
versa. Social groups within which mixing is strong, and between which it is
weak, may cause low-activity people in one group to be infected before
high-activity people in another group.

The social /nonsocial mixing behaviors modeled by Sattenspiel [51] and
Sattenspiel and Simon [52] may also play an important role in the spread of
this disease. Models with a variety of mixing assumptions need to be
developed and compared, both with each other and with behaviorial and
serological studies, to ascertain what complexities are really necessary for
modeling HIV spread and which are not.

C. REDUCTION OF THE RANDOM-CHOICE RISK-GROUP MODEL

Under the assumption that migrations and the natural death rate are
small and that the contacts between individuals go as c(r, r") =1+ h(r)h(r’),
where h(r) = 0 as r — co, the system in Equations (5.4) and (5.5) can be
simplified by analytically calculating the distribution of infecteds in risk and
eliminating the risk coordinate. Besides being faster to solve numerically, the
simpler system has the advantage that it is accurate in the r-direction and
discretization errors in r are eliminated. To derive the reduced equations, we
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first define two functions of time, y and z, which satisfy the equations

[e o] o0
i) [Cra(e,n,r) drdr
0 0

dy(t)
= (9] & 00 i ’ 0 =0,
dt f rS(t,r)dr+f f rl(t,7,r) drdr y(0)
0 o Yo
o e (5.12)
] h(r)I(t,7,r)drd
dzcgt) . fo l(f)j; rh(r)I(t,7,r) drdr 0 =0
7 % [ ey ’ =4,
S(t,r)dr+ I(t,7,r) drd
,Lr(r)rj(;‘/(;r(*rr)rf
and note that
A1, r) =7 (’) + h( )dz(t). (5.13)
If we assume
S(t,r) = 8(0,r) e =rh(nz) (5.14)

and differentiate with respect to ¢, we recover the first equation in the system
(5.4) with p set to zero:

_q%_rl =—A(1,7)S(t,7). (5.15)

Multiplying this expression for S(¢,r) by r and integrating over all r, we
get one piece of the right-hand side of the equations for y(¢) and z(¢) in
terms of y and z, which we call g(y, z). If we let G be the total susceptible
population, then

G(y,2) = [ 8(0,r)e "% gy, (5.16)
0
and we see that
3G(y,z)
g(y,z) = ay

Multiplying the equations for I(¢,0,r) and I(¢,7,r) in the system (5.4),
(5.5) by r and by rh(r) and then integrating over all , we obtain equations
for the other pieces of these right-hand sides. If we define

x(t,7) = fowrl(t, T,r) dr
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and
u(t,7) =f°orh(r)I(t,'r,r) dr,
, 0
then
d
x(¢,0) = 75—,
u(1,0) =— —j—t (%) , (5.17a)
ax(t, 7 dx(t, T
(at )+ (81' )=—7(7)x(t,r),
and
du(t,r du(t, T
() | 3ubr) (e, n). (5.17b)

The equations for y(z) and z(z) can then be rewritten as

(1) wa i(t)x(¢t,7)dr
dt f x(t,7)dr+g(y,z) ’
0 .

»(0)=0,  (5.182)

i(t) fowi('r)u(t,'r) dr

dt foox(t,r) dt+g(y,z) ’
0

2(0)=0.  (5.18b)

Initial conditions on x(0,7) and u(0,7) come from the initial infected
distribution and the definition of x(#,7) and u(t,7). The numbers of
susceptibles, infecteds, and AIDS cases satisfying Equations (5.4) and (5.5)
can then be recovered from the solutions of this simpler reduced system.

In the next section we discuss parameter choices for the models presented
in this section. Numerical results are presented in Section VIIL.

VI. MODEL PARAMETERS

The models discussed in the previous section contain a number of
parameters that must be estimated in order to make calculations. Some of
these parameters can be estimated fairly well [u, v, or 8(7)], but for most
of them only partial information is known. We wish to explore the effects of
parameter changes, within plausible ranges, on the solution of these models.
In this section we discuss the information that is known about these
parameters and the possibilities that we explore in the numerical simulations
presented in the next section.
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A. RATE OF DEVELOPING AIDS

‘The fraction of infecteds developing AIDS within time 7 since infection
has been estimated for the first 90 months for both the San Francisco
hepatitis B cohort [27] and the Hersey hemophiliac cohort [20]. These
estimates show that small numbers of adults begin developing AIDS 2 years
after infection, with a larger and larger fraction developing AIDS each year
up to the end of these studies, when 30% and 25% of these cohorts,
respectively, had developed AIDS after about 7 years. Progression-time
distributions have been estimated for shorter times for other cohorts.

Unfortunately, error bars are large on all of these estimates because of the
small sample sizes. Also, in most cohorts, conversion times are known only
within some general time period, with the earlier conversion times the least
well measured. In addition, the rate of developing AIDS depends upon the
age, health, and sex of an individual as well as the course of the disease, e.g.,
KS, PCP, or dementia.

We cannot wait another 10 years or more for the data before estimating
the distribution beyond 8 years. One way to make these estimates is to
choose a reasonable functional form and fit the parameters to the initial
portion of the curve using existing data. A reasonable function should have
an initial shape similar to the data and should be nonsymmetrical, with some
people developing AIDS many, many years after infection. These restrictions
still leave the future shape of the curve arbitrary. Weibull, gamma, and
log-logistic distributions have been used in various studies by previous
authors [37, 42]. We have chosen to use the Weibull distribution of Medley
et al. [42],

C'(1) = pgPrP~le™ D" (6.1)

with p=24, ¢=0.11 for the times from infection to AIDS, primarily
because it agrees well with the first 7 years of estimates from the portion of
the San Francisco hepatitis B cohort for whom the date of infection can be
estimated (George Lemp, personal communication). This distribution, shown
in Figure 8, has a maximum at 7.5 years and a median value of 8 years and is
chosen such that all infected persons eventually get AIDS. If less than 100%
of the infected people get AIDS, the tail of the distribution should be
reduced, but the first 7 years should be left unchanged.

To derive the rate y(r) of getting AIDS at time 7 after infection from
C’(1), we note that the solution to I, + I =—vy(7)I(t,7) is I(t,7)=
exp[— [Jy(7)dr]I(t — 7,0). Thus, the fraction of infecteds infected at ¢ — 7
who have not developed AIDS by time ¢ is the exponential coefficient,
exp[— f§y(7) dr]. This fraction is also 1— [jC'(7) d7. Equating these two
expressions, we conclude that

v(n) =C(n-c()] ™, () =[Cln)dn,  (62)
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Fic. 8. Conversion from infection to AIDS as given by Eq. (6.1) with p=24,
q = 0.11. Here C(7) is the probability of developing AIDS by r years after infection, C'(7)
is the probability density of developing AIDS at 7 years after infection, and y(7) is the
rate of developing AIDS at time 7 after infection.

is the rate that an individual develops AIDS. y(7) is shown in Figure 8 for
the Weibull distribution of Equation (6.1).

A possible way to estimate the distribution beyond current conversion
times is to collect data on serological markers such as T-4 cell counts and
T-4/T-8 ratios as a function of time since infection. These markers indicate
the rate of disease progression, even in otherwise asymptomatic individuals;
Brodt et al. [8] and Redfield [47] found that over 80% of their cohorts
deteriorated in 2- to 3-year periods. If distribution functions for these
markers were estimated for different times since infection, then they could
be projected into the future to predict the progression-time distribution.

B. INFECTIVITY

In Section IIL.B we postulated a dependence of the infectiousness of a
contact on the clinical status of the infector, which is shown as the dotted
line in Figure 9 for a time to AIDS of 8 years. This postulate is based on a
few measurements of viral presence as a function of clinical status and on
speculations about viral interactions with the immune system. Information
about actual variations of infectivity with disease progression are anecdotal
at this point. Even information on average per-contact infectivity is only
good enough to make estimates on its order of magnitude. Padian et al. [45]
have used partner studies to estimate an average per-contact infectivity from
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F1G6. 9. The infectivity of an average person infected at time 7 is a smeared version of
the infectivity of an individual. We have postulated an individual infectivity i,(7,7,) =
iy(r,7,)=i*(7/7,). The dotted line shows i,(,7,) for 7, =8 years, and the solid line
shows the average infectivity i(7) given by Equation (6.3) with C’(7) as in Figure 8.

man to woman of 0.001 when no other venereal diseases are present. Grant
et al. [24] have used seroprevalence estimates to estimate a per-partner
infectivity for man-to-man transmission (with receptive and insertive inter-
course) of i, = 0.10, but they had no information on numbers of contacts
between partners. They also make some estimates for per-contact infectivity,
assuming a fixed number of contacts per month, and get a range of 0.004 for
' 8 contacts to 0.03 for 1 contact per month. Only a study with information
about the number of contacts between partners and the clinical status of the
partner can give actual numbers, but these data indicate that the average
infectivity of a sexual contact probably lies between 0.001 and 0.03.

We assumed above that the infectiousness of a single contact, i(7), is the
average for all infected adults. The infectiousness of any single individual,
i,(t), may have occasional ups and downs as health varies, and these
variations will be smoothed out when averages are taken. More than this,
there is a wide spread in the rate at which immune systems deteriorate. We
can think of i,(7) as the sum of two functions: i;(7), which gives the initial
immune response as viral counts first go up and then are depleted by
antibody response; and i,(7,7,), which gives the long-term immune re-
sponse in terms of the individual’s time to AIDS, 7,, after infection. If the
time to AIDS is given by a probability distribution as C’(7,), then compari-
son of a model with 7, explicit and our model without 7, shows that the
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average infectiousness is
. . o -1
i(r) =i(r)+ [Tiy(r,7)C(z) dr[1-C"(D] . (63)

Figure 9 shows the effect of this convolution on a speculated i;(7).

Estimates of the time between infection and antibody response are
difficult to make. Not only are accidents to health-care workers with
documented seroconversion rare, but also few people at risk have been tested
frequently. enough to obtain good estimates of their seroconversion dates.
Thus, this time interval may be from a few weeks to a few months and may
be different for different individuals. The relation between viral presence
and antibody response also is not well established. Thus, the average width
of the initial peak and the ratio between the maximum and minimum values
are unknown. |

For the T-model calculations of the next section, we have taken i, (7) =0
and i,(7,7,)=i*(1/1,). We use a piecewise linear infectivity, i*(7/1,), as
shown in Figure 9. The solid line in Figure 9 shows the effect of applying
Equation (6.3) to the Weibull distribution of Figure 8 and the i*(r/7,)
shown as i,(7,8). We investigated the effect on model solutions of changes
in this profile for i*(x).

C. DEATH RATES

The death rates p and 8(r) are the model parameters for which the best
data exist. If we take p™! to be the average lifetime of an adult, it is around
70-80 years. On the other hand, if we want p to represent the rate of
attrition out of the at-risk community, a p~! of 30-50 years is more
reasonable. In our calculations, we use p = 0.02 years™1. -

The probability of death once AIDS symptoms appear can be estimated
from CDC mortality data, where deaths are recorded according to diagnosis
date. The rate of death is high at first and gradually decreases. An exponen-
tially decreasing probability density D’(7) for death as a function of time 7
since developing AIDS, which gives a constant death rate §(r), fits ade-

quately. A slightly better fit is found by taking the density function to be
D(r) = dyexp| — dyr(1+ dyr) '], (6.4)

where 7 is the time since AIDS symptoms appear and d; =1 is chosen to
normalize the area to 1 at 7 =20 years. Now we get the rate of death to be
decreasing in 71:

8(r) =D(7)[1-D(7)]"},  D(r) =f07D’( 1) dr,.  (6.5)
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d, =0.075 and d; =0.05 give reasonably good fits to the CDC data, with
48% dead in 1 year and 90% dead about 5 years later. A recent follow-up of
AIDS cases found that deaths were severely underreported [26]. Thus, this
distribution might underestimate the true death rate due to AIDS. This
underestimate will be somewhat less severe than it might have been because
of the widespread use of AZT. |

D. DISTRIBUTION OF RISKS

Sexual-activity data from studies of homosexual men show that there is
an enormous variation between individuals in the numbers of partners and
the amount and type of contacts. Participants in the Multicenter AIDS
Cohort Study (MACS), who were questioned between April 1984 and March
1985, reported between 1 and 500 male partners in the previous 6 months,
with a mean of between 5 and 10 [34]. The San Francisco Men’s Health
Study recorded the numbers of their respondents according to the groupings
0,1,2-9,10-49, > 50 partners in the 2 years before June 1984 [59]. Homo-
sexual men surveyed in 1984 in London and grouped according to 0, 1-5,
6-50, 51-00, and >101 partners in the previous year show a similar amount
of variation (data from T. McManus reported in [40]).

These data are available only in interval form, whereas we use a continu-
ous distribution in our model. Unavailability of continuous distributions is a
- common problem with data. To derive estimates of this continuous distribu-
tion, we first formed the cumulative data set of how many people had no
more than x;, x,, ... partners in the time interval, where x,,x,,... are the

top values for the interval. The last x; is chosen somewhat arbitrarily. We

then interpolate the cumulative data with a smooth, monotonicity-preserving
interpolant, such as constrained cubic splines. Differentiating the interpolant
gives the continuous density function. Data sets from different studies, with
different intervals, can be compared, or combined, using weighted linear
combinations of the interpolants, with weightings appropriate to sample size
or other knowledge (such as date of sample or sampling procedure). Figure
10 shows the continuous density function obtained from combining the
McManus data with data from Carne and Weller, also reported in [40].

The density functions from these interpolations of the San Francisco and
London data can be used to derive average partnership densities and
variances for each grouping. These estimates (especially the variance) depend
on how large the maximum was assumed to be for the group with > 50 or
> 101 partners. The MACS study indicates that this number is large because
there are people far out in the distribution, giving it a long tail [34]. For the
London data, which are given in terms of partners/year, a simple function
that approximates the data is 0.06(1 +0.02r)~*. This function has a mean of
25 partners /year, matched to the mean of the interpolant, and a variance of
25/3 partners/year. At r = 75, the function is 0.0015:
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Fic. 10. The distribution of homosexual men attending STD clinics in London,
obtained by combining data of McManus (partners/year) and of Carne and Weller
(partners/month) using the procedure outlined in the text. The dotted line shows the
inverse quartic with the same mean as the data. (Data reported in [40}.)

The fact that this inverse quartic function looks much like the data is
interesting. For functions of the form Sy(n)=a(l+ br)™", the exponent
n =4 is the smallest integer choice before the variance becomes infinite. If
we expect humanity to be as variable (within finite reason) as possible, we
might predict that all risk behavior will follow a similar distribution with »
between 3 and 4. The dotted line in Figure 10 shows the inverse quartic, with
the mean matched to the data. In the risk-model calculations of Section VII,
we used this inverse quartic, with a mean of 24 partners per year.

Information on the number of contacts between different types of partners
(long-term, casual, prostitutes) is scarce, even for these homosexual cohorts.
This critical information is beginning to be collected [32]. Because transmis-
sibility through different types of contacts may be different, the frequency of
each type of contact needs to be quantified. Without such knowledge, the
best that we can do is to make some reasonable assumptions and explore
various possibilities.

The assumptions that we use are that people with large numbers of
partners have one contact with each partner and that people have more
contacts with each partner when both partners have fewer partners, up to
some maximum number. For simplicity, we use the contact function
c(r,r") =1+ (¢, —1)exp[— c,(r + r’)] and vary the constants ¢, and c,.

Behavior in the homosexual community has changed substantially since
these responses were recorded. By mid-1982, the first news stories on AIDS
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began to have an impact [2]. The change in homosexual behavior through
fewer contacts or safer sexual practices is reflected both by the drop in rectal
gonorrhea in San Francisco [33, 23] and in the results of cohort surveys
[59, 38). We would eventually like to incorporate these changes, but we can
first use our model to ascertain whether it captures the infection pattern that
occurred before this change. Perhaps information from contact-tracing stud-
ies [6] can be used to understand the important questions of partner
selection and frequency of various types of contacts between partners.

Similar information is needed about heterosexual behavior and about
needle use. Who does what with whom and how often are very important
questions to answer if we are to understand this pandemic.

VII. SAMPLE CALCULATIONS

Our focus has primarily been on the qualitative features of the early
growth of the epidemic. Therefore, the calculations in this section compare
the effects on the growth of the infected population as parameters are varied.
We compare the 7-model and three-risk based models (the random-mixing,
the biased-mixing, and the diffusion model) with no 7-dependence. In the
7-model, we examine the importance of initial conditions and of the time
variation of i(r). For the risk-based models, we examine the number of
infecteds versus risk and show that there are substantial differences in
predictions for the growth of the epidemic. Also, there are significant
differences in who is being infected in the random-choice and biased-partner
models. _

We have focused on early growth because it is important to understand
how the epidemic moves into new populations and which interactions are
important in its transient dynamics. Understanding these transient dynamics
is the only way to understand which new populations are at risk and what
the short-term effects of behavior changes and medical advances will be. We
are still in the early stages of this epidemic, so the data that we have come
from these stages. We emphasize that these models are too simplistic to give
accurate predictions of the AIDS epidemic and that the following calcula-
tions are meant only to illustrate the behavior of the models.

A. 1-MODEL

We first calculate the solution of the model in Equation (5.3), using (6.1),
(6.4), the parameter values described in Section VI, and the initial conditions

S(0) =10,
100,7) = p~1523.8(7, — 7)[1- C(7)] X1075, 7<%, (7.1)
A(0,7) =523.8(7, — 7)’[1- D(7)] X107, <.
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I(0,7) and A(0,7) are zero for 7 > 7, and 7 > 7, respectively. The units are
millions of people and years. The scalar parameters used in the first set of
calculations were p=0.02 year™!, r=36 partners/year, p=1, 7, =18
years, and 7, = 0 years. Equations (6.2) and (6.5) were used for the rates of
progression from infected to AIDS and from AIDS to death. The individual
infectivity i,(7,7,) =i*(7/7,) in Equation (6.3) was a piecewise linear ap-
proximation L[(7,%),(7,i,),...], shown as the dotted line in Figure 9,
which for 7, = 8 years connects the (, i) data points

i;(t,7)=L[(0,0),(0.1,0),(0.4,0.01),
| (0.7,0.005),(5.0,0.005),(8.0,0.01)]. (7.2)

- This distribution and the resulting i(7) are shown in Figure 9. We also
examine the effect of varying some of these data points.

The solutions were integrated in time with an explicit Adams-Bashford-
Moulton method to an accuracy of 107° per unit time. The r-derivatives
were calculated with fourth-order finite differences on a uniform grid of 201
mesh points. The grid spacing and error tolerance were varied to check
convergence of the solutions.

The solution in Figure 11(a) illustrates how the susceptibles steadily
decline to near-equilibrium values after 40 years. Initial growth of infecteds
and AIDS cases is exponential, unlike AIDS cases in the United States
(Section IV). The infection saturates the total population in about 17 years,
after which it is greatly reduced because of AIDS deaths. In Figure 11(b)
note that the rate of people infected per year at ¢ =15 years has a maximum
at 7 =3 years. This maximum moves out and decreases with time because of
the depletion of susceptibles [Figure 11(a)]. _

By using caseload data, probability density functions can be constructed
to determine what fractions of the infected population are in each stage of
the disease or have developed specific opportunistic infections as a function
of time since HIV infection. These distributions can be applied to the
predictions of the infected populations, such as the ones in Figure 11(b), to
determine how many people will be in each disease stage at any given time,
These derived quantities and estimates are a major advantage of calculating
the time since infection as a variable in the model.

By varying the infectivity profile, we can dramatically change the rate at
which the susceptible population is infected. In Figure 12 we show calcula-
tions with four different infectivity profiles. The average infectiousness of an
individual, [yi*(x)dx, is the same for all four profiles. When the amount of
infectiousness in the initial peak is modified, the center region is raised or
lowered accordingly. The difference in the transient solutions-illustrates that
the shape of the initial peak in infectivity is important. The shape is
important because more people were infected recently (low 7) than 5-7 years
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F1G. 11. (a) The solution of the model in Equation (5.3) with the initial conditions
T =18 years, 7 =0, p=1, and infectivity as in Equation (7.2). Here I(¢) = [I(t,7)dr
and A(t) = [A(t,7)d7. (b) The distribution of infected and AIDS cases during the
calculation at times 10, 15, and 20 years.
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FiG. 12. The rate at which the susceptible population is infected depends upon the
infectivity profile even when the area under i;(7,7,) remains unchanged. /(¢) was calcu-
lated with Equation (7.2) with the following changes: (a) (solid) unchanged; (b) (short
dashes) initial peak lowered to (7,i) = (0.04,0.01) and center region raised to (0.7,0.01),
(5.0,0.01); (c) (dash-dot) initial peak raised to (0.4,0.2) and center region lowered to
(0.7,0.0), (5.0,0.0); (d) (long dashes) final peak raised to (8.0,0.3) and delayed by extending
the center reglon to (7.0,0.005).

ago (high 7). Also, the high infectivity for > 5-7 years is important because
of its long duration. However, the shape of the late high infectivity is not as
important as the shape of the front peak during the early part of the
epidemic, because there are relatively few people in this late period. If the
infected population remains active in this late, highly infectious period,
the epidemic will spread much faster than if they discover they are infected
and reduce their sexual activity. Here again we see the need to make testing
widely available.

Next the initial conditions of Equation (7.1) were changed to match the
current (1988) AIDS case data and the estimates for infecteds from Section
IV by setting p =0.72, 1, =14.3 years, and 7, = 6.8 years. When we com-
pared these solutions with Figure 11(a), starting at time 8.75 years, we found
that the solution from these initial conditions differed for only a couple of
years. After 4 years, the calculations were essentially identical and hence are
not included here. If i(7)r is smaller, the effect of the initial conditions
persists longer and imposes cubic growth of the cumulative AIDS cases for
the first 5 years. This initial cubic growth would be due only to the past
cubic growth of infecteds in the initial conditions of Equation (7.1).
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Fi1G. 13. (a) The random-mixing [c(r, ') =1] risk-based model in Equations (5.4) and
(5.5) exhibits an initial exponential growth in infecteds. This behavior is not unlike the
models where an average risk behavior is used for all susceptibles. S(z) = [S(¢,r)dr,
I(t) = [I(t,r)dr, and A(t)= [A(¢,r)dr. (b) The majority of those infected and with
AIDS at time ¢ =10 years are in relatively low risk groups in the random-mixing model. (c)
The low-risk susceptibles are infected early in the epidemic in the random-mixing model.
The distribution of infecteds is shown at times 4, 6, 8, 10, and 12 years, indicated on .the
curves.
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F16.13. (continued)

B. RISK-BASED MODELS

To simplify the calculations and analysis, we eliminated the 7-dependence
in the risk-based model (5.4). The r-independent parameters were defined to
be the average values, y=0.1, § =0.5, and i=0.025. The initial suscep-
tible population is distributed in risk as an inverse quartic S(0,r)=
Sy 32m)*(2m + r)~4, with total population [S(0,r)dr =10 million, mean
m = [rS(0, r) dr (10 million) ' = 24 partners/year. There is migration into
all risk categories with migration rate equal to the natural death rate,
p = 0.02 years ™! times S,(r) = S(0, ). Initially, there is a Gaussian distribu-
tion of 0.001 million infected individuals, centered at risk r=175
partners/year, with height 0.0001 million-years /partner, and no AIDS cases.

Random-Mixing Model. The risk-based calculation shown in Figure 13
used A(z,r) from Eq. (5.5), with the contact function c¢(r,r’)=1. This
calculation corresponds to unbiased random mixing across risk groups with
a single contact per partner. With p =0, this calculation is described by the
reduced model described in Section V.C. Because most of the susceptibles
have low-risk behavior (small r), a consequence of random partner choice is
that most of the partners of high-risk behavior people have low risk. This
result is contrary to the sparse sociological data that are available.

Because most of the partners of high-risk people are low-risk, the high-risk
group acts as a pool of infection for the lower-risk group, causing
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FiG. 14. (a) The infecteds in the biased-mixing model in Equations (5.4), (5.7), (5.9),
and (5.10) with the contact function in Equation (7.3) grows as a quadratic polynomial for
many years, after a brief transient due to the initial conditions. (b) The AIDS cases at time
t =10 years are centered at a substantially higher risk behavior than in the random-mixing
model. Note that the AIDS cases have a much flatter distribution in risk than do the
infecteds. (c) The infected population forms a wave that sweeps from high-risk behavior
groups into lower-risk groups. The distribution of infecteds is shown every 5 years, at the
times marked on the curves.
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the lower-risk populations to become infected very quickly, with most of the
early AIDS cases in lower-risk categories. The distribution of the popula-
tions at 10 years is shown in Figure 13(b) as a function of risk. The
distribution of the infected population is shown in Figure 13(c) for a
sequence of times. We remark that if we had been plotting the fraction of
the population that is infected, I(z, r)/N(¢, r), then a saturation wave of the
fraction of infecteds in a particular risk group would sweep from the
high-risk categories into the lower-risk categories. However, because there
are so many more susceptibles at low risk than at high risk, the total number
infected does not have this shape at all.

The initial growth of infecteds and AIDS cases is exponential for this
model, just as for the 7-model. By time 10 years, the infection saturates the
population and the susceptibles are greatly reduced. However, the people at
lowest risk are protected, so the equilibrium susceptible population is
somewhat larger than for the r-model and the total number infected is
somewhat less.

Biased-Mixing Model. Next, we enforce the biased-mixing restriction
that people have contacts only with individuals having similar risk behavior.
The contact function

c(r,r)=1+e a0t (¢, 1) (7.3)
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F1G. 15. (a) The solutions of the diffusion model (5.11) are polynomial, rather than
exponential. Because infecteds are not removed upon developing AIDS, they grow faster
than in Figure 14. Also the susceptibles are infected faster by the larger infected popula-
tion. (b) The infected saturation wave solution of the diffusion model sweeps into
lower-risk behavior similar to the solution in (a).
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and the acceptance function p(r,r’) defined by Eqgs. (5.7), (5.9), and (5.10)
are used. In the calculations shown in Figure 14 we used the constants
¢, =11, ¢, =0.1, and €= 0.0125. Note that in contrast to the random-mixing
example, the infecteds in Figure 14(a) grow as a quadratic polynomial as the
saturation wave shown in Figure 14(c) sweeps from high-risk into lower-risk
groups. The growth of infecteds is much slower: after 40 years the lowest-risk |
susceptibles have not yet become infected. The current number of AIDS
cases at 40 years is about the same for the two calculations, however, and the

‘number infected is actually greater. Thus, the eventual impact of the epi-
demic may be just as devastating, depending on whether it can continue to
reach the larger, lower-risk populations or not.

Note in Figure 14(b) that the AIDS cases at time ¢ =10 years have a
broader distribution than do the infecteds, and AIDS cases lag behind the a
infection wave. This scenario is closer to the observed distribution of risk
behavior in the early AIDS cases than the unbiased-mixing model. Although
this model is far better than the unbiased-random-mixing model, we believe
that it will be significantly improved if we add a blend of biasing mixing
with a lower level of unbiased random mixing. Also, people do not maintain
the same risk behavior forever. Therefore, we are considering adding a
mechanism that will allow for some migration of risk behavior.

Diffusion-Risk Model. The solution of the nonlinear diffusion model in
Equation (5.11) is shown in Figure 15 for ¢=0.01 and the same initial
conditions as the previous risk models. The infected saturation wave in
Figure 15(b) is similar to the one shown in Figure 14(c), which this equation
approximates. The major distinction between the two models is the lack of
birth and death processes with the model in Equation (5.11). This lack
causes the infected population to be larger because infecteds are never
removed by AIDS, and the larger infected population can then infect more
susceptibles, causing a faster epidemic. Also, mew susceptibles are not
created, causing an even more rapid depletion of the population. The
epidemic is, however, polynomial in time, as was the calculation of Figure
14.

VIII. SUMMARY

Mathematical models for the spread of the AIDS virus are essential tools
for understanding the AIDS epidemic. Using models, we can investigate
competing forces and study their interactions to improve our understanding
of the relationships between the social and biological mechanisms that
influence the spread of the disease. The relative influence of various factors
on the spread of the epidemic, as well as the sensitivity to parameter
variation, can be ascertained. We can use this knowledge to help set
priorities in research. Once the important forces have been identified, we can
develop models with which we can run computer experiments comparing the
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outcome of different assumptions and strategies for controlling the epidemic.
' Computer experiments can save time, resources, and lives, allowing us to
predict the future and acting as a control group for true experimental
situations.

As a first step in developmg a reliable model, we have used a simple
deterministic model to explore the impact of various plausible shapes for the
infectivity as the time since infection increases. These calculations, which use
an average-risk behavior, point out the importance of measuring the variabil-
ity of the infectiousness of an individual during the disease.

We have then used models that stratify the population according to the
number of sexual partners per year and have compared random partner
choice with a strong bias of “like prefers like.” The two mixing patterns
result in radically different epidemics. This difference indicates that much -
more must be known about the interactions between people that lead to
AIDS-virus spread before it will be possible to accurately predict the AIDS
epidemic. The number of sexual partners that people have, the partner-selec-
tion process, and the amount and type of contacts between partners must be
understood and correlated with sociological information about the partners,
such as how many partners one’s partners have. Similarly, patterns of needle
sharing by drug users and the effect of this drug abuse on sexual behavior
strongly affect this epidemic.

In our analysis, we have focused on the initial growth of the epidemic. If
we are to predict where this epidemic is going, we must fully understand its
transient dynamics, including the response to changes in the environment of
the epidemic. The epidemic will not reach an equilibrium endemic state for a
very long time, partly because of the long conversion times from infection to
AIDS, during which a person can transmit the virus. This time factor makes
AIDS unlike many other epidemics, including measles [15], gonorrhea [28],
and syphilis [39].

Another reason AIDS is different is that medical advances and changes in
lifestyle will greatly modify the epidemic. Education programs are being
launched to promote condom use, having fewer sexual partners, the use of
nonoxynol-9, the use of sterile needles, and similar practices. The infectious-
ness and susceptibility of high-risk individuals in the heterosexual commun-
ity may be significantly reduced if programs are initiated to quickly identify
and treat other STDs. More people are being tested for antibodies to HIV
‘and counseled on the implications of the test results. Treatments are being
developed that will prolong the lives of infected persons and perhaps lower
their infectivity. A partially effective vaccine may eventually be developed.

Models can be used to investigate the effects of each of these programs on
the course of the epldemlc only if they can capture the transients of the
epidemic.

In developing models, we must also decide on what questions we want to
answer. If public-health officials are to attack this epidemic efficiently, then
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they need to know which groups of people are most at risk of infection.
Models that distinguish between behavioral groups may help predict where
the infection is likely to go next. Our risk-based model is aimed toward this
question, although it is at present too simplistic to use for this purpose.

We can choose parameters in our preferential-mixing model that ensure

“that AIDS cases in the numerical simulations match the past history in the

United States. Many other reasonable models can also quantitatively fit
these cases but may predict a very different future. Quantitatively matching
past AIDS cases is not, therefore, sufficient to distinguish between models. .
Qualitative discrepancies between AIDS cases and any model need to be
explained; for example, models with initial exponential growth do not fit the
U.S. AIDS case data.

" Models must be compared with data from studies connecting risk behav-
ior with infection. For example, we plan to compare our preferential-mixing
model with the San Francisco hepatitis B study. In this study of sexually
active homosexual men, which started in 1978, information on numbers of
steady and nonsteady sexual partners and numbers of contacts per partner
was collected, and a series of serum samples were stored from a subset of the
men. Many of these samples have been tested for HIV, and so a correlation
between sexual behavior and time of infection can be made and compared
with our model. Inconsistencies will be seen, and the model will have to be
revised to account for them.

Limitations of the data will greatly influence the capability of models to
accurately predict the future. Many of the sensitive parameter values, such as
the magnitude and variability of infectiousness, will be known accurately
only after years of careful study. The current lack of a national AIDS
data-base center to collect, analyze, and distribute the available data is a
severe block to our understanding. We support establishing a data center
that will encourage closer collaborations between modelers and data collec-
tors. The modelers will be more driven to answer questions raised by data,
and they will pose questions that will suggest new data that should be
collected and more effective sampling strategies to reduce the variance in the
results. Focusing on the data helps bridge the gap between mathematical
modelers and epidemiologists. Fortunately, the creation of a national AIDS
data-base center is one aspect of the AIDS epidemic that can be solved with
appropriate funding.

Unlike many other diseases, HIV infections can persist (invisible and
seemingly dormant) in a few isolated individuals (with low sexual activity)
for long times. This feature can cause sporadic local epidemics whenever the
infected individual passes the virus to a highly sexually active person. In
these situations the virus can spread rapidly without warning, infecting a
great many people. These sporadic events should be modeled by a stochastic
rather than a deterministic model, such as ours, that smooths over the
sporadic effects of such local random features. Because of the long time



MODELS TO UNDERSTAND AIDS 469

between HIV infection and AIDS, such situations can be ascertained only
through vigilant HIV testing and case tracing.

It is important to use models to understand the spreading in parts of the
world other than Western Europe and the United States. The current
prevalence of HIV infection in central Africa (up to 25% in metropolitan
areas) raises serious political and social concerns. Estimates that up to 26%
of the adults in some regions in Asia, Africa, and Latin America are
annually infected with gonorrhea indicate not only that behavior may be
more conducive to the spread of STDs there, but also that the cofactors for
AIDS are different. The presence in central Africa of cofactors, such as
genital ulcers and the lower general health of the population may be
sufficient to explain' the rapid heterosexual spread of HIV infection there
relative to the United States and Europe; but some aspect of sexual behavior
may also be important. Also, condoms and spermicides are used less
frequently in these regions than they are in the United States. We need to
understand the reasons for regional differences, before we can predict the
epidemic in Asia and Latin America.

In addition to transmission models like those described in this report,
models of the immune system can play a significant role in our understand-
ing of the AIDS epidemic. By adding to the understanding of the interac-
tions of component parts of the immune system, these models can help guide
vaccine and treatment developments. They may aid efforts to rid the infected
cells of the virus so they can live a longer, healthier, happier life. One puzzle
that models might help unravel is why T-4 cell counts are gradually depleted
when apparently less than 0.1% are infected at any time and when the virus
can stay dormant in such a cell for a long time. Depletion may be the result
of quick destruction by cytotoxic T-cells or syncitia formation after infec-
tion, or it may be the result of excess HIV envelope proteins binding to CD4
sites and marking them for destruction. Macrophages, a significant fraction
of which are infected in AIDS patients, probably provide a relatively
indestructible reservoir of virus in either scenario [29]. Models may help to
distinguish between several plausible scenarios or suggest experiments.
Another puzzle is why chimpanzees, which can be infected with HIV but do
not develop AIDS, seem to be able to fix and complete the complement
sequence, while humans cannot [55]. Does complement effectively destroy
the virus in chimps before the autoimmune response destroys the T-4 cells?
Could our immune system be artificially stimulated to develop antibodies .
with a more effective complement procedure? Mathematical models can
organize our understanding of the immune system in much the same way as
the models described in this paper improved understanding of transmission.

Major advances are required before either an effective antiviral therapy or
an effective vaccine is developed and becomes widely available. Thus, we
have to prepare for a long battle against the spread of the AIDS epidemic.
Our computer simulations of the transmission dynamics of the epidemic will
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give us insight into how the epidemic is developing and will allow us to
visualize the future.
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